Software

INTRODUCTION TO INTEL™ VTUNE™
PROFILER & INTEL" ADVISOR

Matthew Cordery
Application Engineer

matthew.cordery@intel.com

Notices and Disclaimers

DISTRIBUTION STATEMENT: None Required

Disclosure Notice: This presentation is bound by Non-Disclosure Agreements between Intel Corporation and the Department of Energy, and Argonne National Lab, and
is therefore for Internal Use Only and not for distribution outside these organizations or publication outside the above referenced Subcontracts.

Intel Corp Proprietary Information: This document contains trade secrets and/or proprietary information of Intel Corporation and Intel Federal LLC (“Intel”) and is
exempt from disclosure under the Freedom of Information Act. The information contained herein shall not be duplicated, used or disclosed outside the U.S.
Department of Energy, UChicago Argonne LLC except as permitted by the contract previously referenced. The data subject to this restriction are contained in all sheets
of this document.

USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Export Control: This document contains information that is subject to export control under the Export Administration Regulations. However the contents remain within
the applicable ECCN's provided in the most recent Multi Party for Intel Restricted Secret Information that is applicable to the CORAL Aurora Program.

Intel Disclaimer: Intel makes available this document and the information contained herein in furtherance of the CORAL Aurora Program. None of the information
contained herein is, or should be construed, as advice. While Intel makes every effort to present accurate and reliable information, Intel does not guarantee the
accuracy, completeness, efficacy, or timeliness of such information. Use of such information is voluntary, and reliance on it should only be undertaken after an
independent review by qualified experts.

Access to this document is with the understanding that Intel is not engaged in rendering advice or other professional services. Information in this document may be
changed or updated without notice by Intel.

This document contains copyright information, the terms of which must be observed and followed.

Reference herein to any specific commercial product, process or service does not constitute or imply endorsement, recommendation, or favoring by Intel or the US
Government.

Intel makes no representations whatsoever about this document or the information contained herein. IN NO EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY
DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS,
BUSINESS INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2020, Intel Corporation. All rights reserved — unpublished work.

C_opyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Get the tools

« Advisor and VTune are now part of the Intel® oneAPI Base Toolkit
 Download entire toolkit
* Download just VTune and Advisor (customizable installation)

» https://software.intel.com/content/www/us/en/develop/tools/oneapi/bas
e-toolkit/download.html

* Available for Windows, Linux, MacOS (view Linux results)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html

Agenda

« Advisor —Intel's vectorization and optimization tool

* CPU Optimization

 Roofline

* GPU Offloading
« Offload Advisor

* Roofline
* VTune - Intel's performance metric investigation tool
* CPU capabilities

e GPU metrics

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
= Core

— Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)

— Cache use needed to feed vector units
= Socket

— Using all cores in a processor requires parallelization (MPI*,
OMP*,CUDA*,OPENCL*,SYCL*,DPC++ ...)

— Using coherent, shared socket caches
= Node
— Minimize remote memory access (control memory affinity)

— Minimize resource sharing (tune local memory access, disk 10 and network traffic)

Optimization Notice

Copyright © 2018, Intel C

ADVISOR: NBODY DEMONSTRATION

eeeeeeeeeeeeeeeeeeeee

N-body code

= Dr. Fabio Baruffa (original): https://github.com/fbaru-dev/nbody-demo

= Paulius Velesko (includes gpu): hitps://github.com/pvelesko/nbody-demo.git

— Basically, the code in this demo

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://github.com/fbaru-dev/nbody-demo
https://github.com/pvelesko/nbody-demo.git

Nbody gravity simulation

Consider a distribution of n point masses located at r;with masses m; and velocities and
accelerations v;and a;, respectively

We want to calculate the position of the particles after a certain time interval using
Newton’s law of gravity.

struct Particle for (1 = 0; i < n; i++){ // update acceleration
{ for (3 = 0; 3 < n; J++){
public: real_type distance, dx, dy, dz;
Particle() { init();} real_type distanceSqr = 90.0;
void init() real_type distanceInv = 0.0;
{
pos[@] = ©.; pos[1] = @.; pos[2] = O.; dx = particles[j].pos[@] - particles[i].pos[@];
vel[@e] = 0.; vel[l] = 0.; vel[2] = 0O.;
acc[@] = 0.; acc[1l] = @.; acc[2] = 0.;
mass = O.; distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
} distanceInv = 1.0 / sqrt(distanceSqr);
real_type pos[3];
real_type vel[3]; particles[i].acc[@] += dx * G * particles[j].mass *
real_type acc[3]; distancelInv * distanceInv * distanceInv;
real_type mass; particles[i].acc[1] += ..
}; particles[i].acc[2] += ..

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

The Basic Tuning Cycle

Infinite cycle only broken by external
constraints (time, papers, releases ...)

Procedures for measuring performance

Validate Measure and validating results are critical
Results Performance

Automation and environment control are

key for consistency
Profile

Modify Code L,
/ Application Where do | start?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Version Optimizations

VerO
* |nitial implementation

Ver1

= Vectorized with compiler flags (march/mtune)
Ver?2

= Use only floats

Ver3/4

= A0S -> SoA + SIMD Reduce
Ver7

= OpenMP with data alignment

Optimization Notice

Copyright 018, Intel Corporation. All rights reserved.
*Other nar and brands may be claimed as the property of others.

INTEL" ADVISOR

Vectorization and Static Analysis

https://www.alcf.anl.gov/user-guides/advixe-cl-xc40

Intel® Advisor — Vectorization Optimization

FILTER: | Al Modules ~|[AlSources ~|[Loops ~|[ANThreads ~| INTEL ADVISOR 2017

G Summary % Survey Report | (@ Refinement Reports

Faster Vectorization Optimization: p—

Vectar
Issues

| |22 [loop in 5252 at loops90.£:1172)] O |

= Vectorize where it will pay off most 26 lopim e s opn

@ 2Ineffi.. 28755 0136 00825 | @ vectorizat ..

510 [loop in 5126 at loops30.f.447] @ 2Prov... 0.957s I Scalar 03971 01667 | @ vector de...

1 1 H H H 5O [loop in 5343 at loops90.£:2300] G 2Assu... 0873 [EEE Scal & vector de..

= Quickly ID what is blocking vectorization e et T e as Tl e O
. . . . [loop in 5353 at loops90.:2381] | [] 9 1Possi. 0.719s @M Vectorized (.. 27710 01250 ave [38e JaTex

| | Tlps for effectlve Vectorlzatlon (?[\anmsZEZijpSpara\lELfDr.” ?3%“ 0.693s EID Scalar Versions 02881 | 0.2220 ﬁwmumm

» Safely force compiler vectorization
= Optimize memory stride

Roofline model analysis:

» Automatically generate roofline model

= Evaluate current performance
» |dentify boundedness

0.033 0.54

htto://intel.ly/advixe-cl&e

Add Parallelism with Less Effort, Less Risk and More Impact

Copyright © 2018, Intel Corporation. All rights reserved. ‘ |nte‘ . 12

*Other names and brands may be claimed as the property of others.

http://intel.ly/advisor-xe

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.

Note: if you're using Theta run out of /projects rather than /home

. Collect survey (overhead ~5%) advixe-cl -c survey
= Basic info (static analysis) - ISA, time spent, etc.
. Collect roofline advixe-cl -c roofline
= Basically the survey analysis above with roofline analysis (trip counts, flops)
. Collect dependencies (overhead 5-1000x) advixe-cl -c dependencies
] Differentiate between real and assumed issues blocking vectorization
. Collect Memory Access Patterns advixe-cl -c map
. Get advice on memory strides
. NB: You can run multiple analyses, and sometimes you have to, to get all of the information you need.
. For example, in the same batch job you can do a roofline and a dependency analysis and have the output directory be the same so all of that

information is shown together in a single context.

= Make sure you create different output directories for different experiments.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

What is a roofline?

* Aroofline is a graphical representation of two factors that affect code
performance: flops & memory bandwidth

» Codes at scale may be limited by file I/O or MPI but there can be
different rooflines for those cases.

* Allows you answer questions like:

* Whatis/isn't limiting this kernel’s performance? Which kernels are
more important to overall code performance?

* What gains might | see from focusing on a particular kernel?

 Where do | need to focus my software engineering efforts to achieve
further gains?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Roofline cont'd

« Arithmetic intensity (Al)
* Flops / bytes ratio

« Bytes can be data moved to/from DRAM, cache, etc.

« Kernels with a high Al are limited by chip floating point performance
(e.g. DGEMM)

* Kernels with a low Al are limited by memory bandwidth (e.g. STREAM
triad, many HPC computational physics kernels)

* Kernels can be limited by both

Optimization Notice

Copyr gh©20‘|8| tel Corpo n. All rights reserved.
*Other and bra dmaybllmed hppyfh

Roofline

Limited by floating point ops

Gflops
<
2

® Gflops = MIN(Al * BW, Gflops

max)

Flops/bytes

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
R and brands may be claimed as the property of others.

Cache-Aware Roofline Optimization
Next Steps If Under the Vector Add Peak

If just above the

Scalar Add Peak

Check vectorization
efficiency in the Survey.

flagstoin FMA usage.
If under or near a FLOPS gs to induce usage Follow the
memory roof... A recommendations to

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler

. Try a MAP analysis. LRI improve it if it's low.
Make any approprlate 4 ? V‘ctor Add Peak
cache optimizations. : I ‘
« If cache optimization 1 | Scalar Add Peak...
is impossible, try I : Check the Survey Report
reworking the : I to see if the loop
algorithm to have a | ‘ vectorized. If not, try to
higher Al. ‘ scalar Add Peak get it to vectorize if
possible. This may involve
running Dependencies to
see if it's safe to force it.

>

Arithmetic Intensity

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Use --help option!

advixe-cl --help collect

Examples:

Perform a Survey analysis to determine hotspots.

advisor --collect=survey --project-dir=./advi --search-dir src:r=./src
-- ./bin/myApplication

Perform a Memory Access Patterns analysis on the specified loops.

advisor --collect=map --mark-up-list=5,10,12 --project-dir=./advi --search-dir src:r=./src
-- ./bin/myApplication

Perform a Survey analysis on four nodes of the MPI cluster and store the collected data in the shared ./advi project directory.

mpirun -n 4 advisor --project-dir=./advi --collect=survey
-- <PATH>/mpi-sample/1_mpi_sample_serial

Perform a Dependencies analysis on all innermost loops that run above 2% of the total CPU time.

advisor --collect=dependencies --project-dir=./advi --loops="loop-height=6,total-time>2"
-- ./bin/myApplication

Perform a Roofline analysis.

advisor --collect=roofline --project-dir=./advi -- ./bin/myApplication

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Generate Advisor Command Lines from the GUI

b File @ View @ Help

Summary % Survey & Roofline ™ Refinement Reports

Vectorization and Code Insights

Vectorization and Code Insights perspective lets you identify loops that will benefit most from vector parallelism, discover performance issues preventing from
effective vectorization.

D >_ With the Vectorization and Code Insights perspective, follow these steps (workflow):
*+ Profile your application’s performance using the Survey analysis. Locate un-vectorized and under-vectorized time-consuming loops (hotspots) and functions, and

H Oowaccu rate yo u Want PEEIEEE the estimated expected performance gain of vectorization or better vectorization.
you rre po rts to be iy Vedium || High || Custom * Use the Characterization analysis to enrich the with more precise data to identify better vectorization strategy:

S (1) Measure the call count/loep count and iteration count metrics for your application with Trip Counts and FLOP.

. (2) Get a more accurate view of loops/functions that behave differently when called under different circumstances with call stacks.
|
- . ark up your loops automatically or manually using one of loop selection policies to enable Memory Access Pattern or Dependencies analyses for marked-up
lod

[survey * Use Memory Ricess Patterns tool to check for data structure layout in memory, unit-stride vs. non-contiguous accesses or memory footprint. Eliminate issues

> R o>

Note: Build your target api#kation in Release mode with debug (symbol) infermation to allow binary-to-source correlation in tool reports.

Characterization

Copy Command Line to Clipboard X

Memory Access Pattern... Command line:

r'C:\Program Files (x86)\\Intel\oneAP\advisor\2021.2.0\bin64\advisor"
Dependencies -collect survey -project-dir C:\Users\cordery\AppData\Local\Packages
\CanonicalGroupLimited.Ubuntu18.04onWindows_79rhkp1fndgsc

H \LocalState\rootfs\home\mcordery\testproj\test -

Copy Close

Hide knobs with default values

D Generate command line for MPI

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Collect survey and tripcounts (roofline)

$ Theta: module load PrgEnv-intel amplxe-cl advixe-cl

$ cd project; make

e
#!/bin/bash Where your results go

..stuff.. ‘*

advixe-cl -collect=roofline -trip-counts -project-dir=<project-
dir> -- <executable> <parameters>

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

View Result on Local Machine

« Make sure your local version of Advisor (or VTune) is at least the same as
that of the one used to generate the data otherwise errors might occur.

« X-forwarding is not recommended.

« Tar the result along with sources and binary (if you want to be able to view
them, unless you already have them locally)

* Copy to your local machine

* May have to point advixe-cl at your local sources and binary

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary Report

& Copsed ime: 1072+ [ETTETEE]

B summary % Survey & Roofline ™ Refinement Reports

@ Vectorization And Code Insights

Vectarization an

~ Program Metrics
Elapsed Time 19.733

Vector instruction Set AVX2, AVX

~ Performance Characteristics
Matrics
Tatal CPU time

Survey Time in 1 vectorized loop

Time in scalar code

Characterization
 Vectorization Gain/Efficiency

[— Vectorized Loops Galn/Efficlency!
Program Approximate Gain
Dependencies

~ Per Program Recommendations

4k No data avallable

~ Top Time-Consuming Loops
Laop

loop in GSimulation:

nulation::st

Gloopin
 Ioop in GSimulation::siart at

~ Refinement Analysis Data

A No gata available. Gollect MAF of Depe

~ Recommendations

Use the smallest d

altype loop i

nulatior

art at GSimulation.c

Use the smalle

ata type loop in GSimulation: sta

v

Collection Details

v

Platform Information

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Filter: Al Modules

All Sources

Total
19.728

Number of CPU Threads

Code Insights perspective 1ts you identiy 100ps that will benefit Mest from vector paralielism, diSCOVer performance ISSUes preventing from effective vectonzation.

19725

I T —

3.58x

18.720s
19.720s
18.720s

44.75%: Achieved Vectorization Efficienc
Achieved Veciorization Efficiency = (E
GainfVector Length) * 100%

Vector Length = 8

for original scalar loopy
of Length) * 100%

Summary provides
overall performance
characteristics

Top time consuming
loops are listed
individually

Vectorization
efficiency is based on
used ISA

Survey Report (Source Tab)

@ Elapsed time: 19.73s =1 Filter: All Modules

B Summary % Survey & Roofline ™ Refinement Reports

¥ Performance

+! (=] Funeticn Call Sites and Loops L Issues

&1 ® [loop in GSimulation::start at GSimulation.cpp:132]

“ 1 _start

 main

f GSimulationzstart ¥ 1 Data type conve..
2 [loop in GSimulation:start at GSimulation.cpp:130] !7

% [loop in GSimulation:start at GSimulation.cpp:127] [~ %1 Data type conve.

Total Time

All Sources v Loops And Functions » All Threads ~

CPU Time

19.720< @ 0.000s|
19.720s @ 0.000s!
19.720s I 0.000s|
19.720< B 0.000s|
19.720s @ 0.000s!

Source TopDown Code Analytics Assembly # Recor & Why No

double tsl = 0;

121 double nd = double(n};
122 double gflops = 1e=% * ((11. + 18.) * nd*nd + nd * 19. };

123 double av=0.0, dev=0.0;
124 int

125

126 const double t0 = time.start();

127 @ for (int

et_nsteps () ;

128 |

129 ts0 += time.start();

130 B for (i = 0; i < n; i++)// update acceleration
131 {

132 @ for (3 = 07 3 < mi 3++)

ulatio

ssimulation.cpp:132)

2GATHER; FMA loop processes

GSimulat

ot executed]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Source

Floaté4; Int32;

~ Type Why No Vectorization?
Seli Timew | T "

Function
Function
Function
Scalar & inner loop was already ve...
Scalar @ inner loop was already ve..

Vectorized Loops

Vector ... Effi

Customize View @

| Instruction Set Analysis 2}

ncy | Gain Es... VL (Vec... Traits

Extracts; FMA; Gathers; Inser .. Float32: F..
Shuffles Float32; F
Divisions; Extracts; FMA; Sh... Float32: F..

Total Time % | Loop/Function Time | % Traits *

02165 19.720s m—"

FMA;

Notice the following:

* Vector ISA

* Type Conversions

* Memory Access
Patterns

All of these elements
may affect performance

Survey Report (Code Analytics Tab)

& Elapsed time: 19.73s [NV - filte: AllModules v AllSources v Loops And Functions + Al Threads # Customize View &
B Summary % Survey & Roofline *1 Refinement Reports
CPUT 2] Vectorized L [2]] Instruction Set Anal 2]
#1[=] Function Call Sites and Loops ‘ s :’:\f:mam = I;me P Type Why No Vectorization? Vmom E"(_jc"ps Tl :ﬁ_:u il L pwee—) i
: otal Time | Self Time = or .. Efficiency Gain Es ec.., Traits ata Types
4 [loop in GSimulati at GSimulation.cpp:132) | © 2 Possible ineffi... 19.720sHI8 19.720s B Vectorized (Body) AVX2 358x 8 Extracts; FMA; Gathers; I... Float32; F.. An alytl cs tab contains a
! start 19.720; W 0.000s| Function Wealth Of information
 # main 19720888 0.000s| Function
1 GSimulationstart ¥ 1 Data type conve.. 19.720s BB 0.000s| Function Extracts; FMA; Gathers; Inser... Float32; F...
? loop in GSimulation:start at GSimulation.cpp:130] [19.720sE8 0.000s| Scalar & inner loop was already ve.. Shuffles Float32: F... X
 floop in GSimulation-start at GSimulation cpp:127] [&1 Data type conve. 19.720sHEIB 0000s] Scalar & inner laop was already ve Divisions; Extracts; FMA: Sh... Float32; F..] I nstruction set
* [nstruction mix
» Traits (sqrt, type
conversions, unpacks)
= Vector efficiency
< >|< >
-
Souce Top cserbly 9 Recommendtions 8 Why No Floating point statistics
Loop in GSimulation:start at GSimuiation.cpp: 132 Trip Counts @ Code Optimizations
H . Compller: Intel(R) G++ Intel(R) 64 Compiler Classic for applications running on H
i 19.720s No Tp Courts cata avalabe e And explanations on how
Vectorized (Body) Total time Callect Trip Counts to get more accurate recommendations and vectorization cf,f,';?é, Es,i,'"al;, gai" 3 5;,‘ - h d
efficiency data Veclorization/Oplimization report by Compiler: no messages t ey a re m eas u re O r
AVX; AVX2; AVX2GATHER; 19.720s ca[c [ated e and the bo
FMA Selftime u -ex X
i tion Set p i
1 .. © or hover over the question
~45% Vectorization Efficiency Vectorization Gain
marks.
Traits ™ ®
Extracts, FMA, Gathers, Inserts, Square Raots, Type Conversions

(0] ation Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

LIVEDEMO

CARM (Cache-aware roofline model) Analysis

Using single threaded roof

Performan ce (GFLOPS) X a [B - | [/ Use Single-Threaded Roofs @ | [[] Show Roofline with Callstacks © =

100

Code vectorized, but
performance on par with
scalar add peak?

= Irregular memory access
patterns force gather
operations.

i o
01+ pend 4
o™ =7

| » QOverhead of setting up
Arthmetc tensity (FLOP/Byte) vector o p erat | ons
reduces efficiency.

T T
0.01 0.1 1
Self Elapsed Time: 10.080s Total Time: 10.080 s

Next step is clear: perform a Memory Access Pattern analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Pattern Analysis (Refinement)

advixe-cl -c roofline -r mydat ./nody.x 4000 500
advixe-cl -c map —-r mydat ./nbody.x 4000 500

& Flapsed time: B.17s Filter: Al Modules +» All Sources »

B Summary % Survey & Roofline ®Il Refinement Reports

Footprint Estimate

Site Location Loop-Carried Dependencies Strides Distribution | Access Pattern
Max, Per-Instruction Addr. Range First Instance Site Footprint | Simulated Memory Footprint
iloop in start at GSimulation.cpp:1... No Information Available 33%0% £67% | Mixed Strides 118KB 118KB 08 [
136 real type distanceln £:
137
138 s[i].pos[0]; #/1£1op
39 t /1flop

Mixed Strides

<

Memory Access Patterns Report Dependencies Report @ Recommendations

All Advisor-detectabie issues: C++ | Forfran In!fﬂcrl':nl memory access patterns
reser

n Inefficient memory access patterns present - y access pattems for tf
There Is a high of percentage memory instructions with irregular (variable or random} stride accesses. Improve performance by investigating and handling accordingly.

Check memory access patterns for the outer loop
This loop has inefficient memory access patterns. If the memory access patterns are more efficient for the outer loop, reorder the loops if possible.

Intel, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Mthar namas and hrande mau ha claimand 2e tha neanarhe nf athare

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Storage of particles is in an Array
Of Structures (AOS) style

This leads to regular, but non-unit
strides in memory access

» 33% unit

= 0% uniform, non-unit

" 67% non-uniform
Re-structuring the code into a
Structure Of Arrays (SOA) may

lead to unit stride access and
more effective vectorization

Vectorization: gather/scatter operation

The compiler might generate gather/scatter instructions for loops automatically

vectorized where memory locations are not contiguous

{
public:

real type
real type
real type

real type
};

struct Particle

pos[3];
vel[3];
acc[3];
mass;

{
public:

real type
real type

real type
real type

struct ParticleSoA

*pos_x,*pos_y,*pos_z;
*vel x,*vel y,*vel z;
*acc_x,*acc_y;*acc_z
*mass;

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AoS - array
of structures
Memory
I —~
H
il
|.l.
(0]
|_l
[0}
n
2
-
- ~
o
H
N
|.l.
(0]
|_l
[0}
1]
E:
i .

4
A

Vector
Register

SoA - structure
of arrays

//hemory “\\

P.pos_x[i]

P.pos_x[i+l]

P.pos_x[i+2]

P.pos_x[i+3]

P.pos_x[i+4]

p-pos_x[i+5]

p-pos_x[i+6]

P.pos_x[i+7]

P.pos_x[i+8]

A 4

Vector
Register

Memory access pattern analysis; (NN

How should | access data ?

For B, 1 cache line load computes 4 DP

Best: Unit stride access are faster

= W B 6 g 0 BB

A[i] = B[i]*d

For B, 2 cache line loads compute 4 DP with
reconstructions

OK: Constant stride are more complex

for (i=0; i<N; i+=2)
A[i] = B[i]*d

Bad: Irregular access

for (i=0; i<N; i++)
A[i] = B[C[i]]*d

For B, 4 cache line loads compute 4 DP with
reconstructions, prefetching might not work

inted
: |nteI . 29

righ 018, Intel Corporation. All rights reserved.
and brands may be claimed as the property of others.

Performance After Data Structure Change

In this new version (version 3 in
GitHub sample) we introduce the
following change:

= Change particle data structures
from AOS to SOA

by ¢ Recommendstions @ Why o Vectoruzation?

L06 in GSimleton:siat at GSmusstion 60145 Average Trip Counts: © 4000

Note changes in report: O 562208

36.2205

= Performanceis lower

= Main loop is no longer vectorized

= Assumed vector dependence o
prevents automatic vectorization

GFLOPS: 6.85
GINTOPS: 0.44

Next step is clear: perform a Dependencies analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Dependencies Analysis (Refinement

Run “survey” followed by “dependencies”

advixe-cl —-c dependencies

Cpp———— [...

B Summary % Survey & Rooffine ™1 Refinement Reports

Site Location Loop-Carried Dependencies

loop in start at GSimulation.cpp:1 .. ®RAW:3
real_type dista

w = 0.0f;

dx = particles->p

“y(3] - particles
1] 1

<

Filter: Al Modules ~ Al Sources ~

Footprint Estimate
Strides Distribution Access Pattern
Max. Per-Instruction Addr. Range First Instance Site Footprint

Na Information Available No Information Available No Information Available o Information Available

x[3] - particles->pos_x[il; //1flop
I /151

£1

Memory Access Patterns Report Dependencies Report # Recommendations

Site Name.

Sources

P1 © Parallel site information loop_site 1 GSimulation.cpy

I P4 @ Read after write dependency loopsite 1 GSimulati

p nbodyx ~ Nota problem

Madules State

nbod,

nepp nbodyx M New

PS @ Read after wiite dependency loopsite 1 GSimulation.cpp nbodyx ™ New

ID Instuction Address Description Source Function Variable references Module State

=X3 Owd03d70 Parallel site
Dxd03ded Read
0x403def Write

on oY O

*Other names and brands may be claimed

GSimulation.cpp:151 start
GSimulation cppr158 start nbadyx ™ New

nbodyx A New

GSimulation cpp:158 start nbodyx & MNew

as the property of other:

Simulated Memary Faotprint

No Information Available

Severity

Error

Information

Type

Parallel site information
Read after wilte depend...
Source
GSimulation.cpp
Module

nbodyx

State

New

Not a problem

3 items
1 item

1 item
3 items

4items

4items

Jitems
1 item

./nbody.x 4000 500

ka

Dependencies analysis has
high overhead:

= Run on reduced
workload

Advisor Findings:
= RAW dependency

Recommendations

Source Top Down Code Analytics ~ Assembly % Recommendations & Why No Vectorization?

All Advisor-detectable issues: C++ | Fortran

i o Proven (real) dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) o true dependency (Read after write - RAW) in the loop. Improve performance by investigating the
assumption and handling accordingly.

Resolve dependency
The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the following:
« If there is an anti-dependency, enable vectorization using the directive #pragma omp simd safelen(length) , where length is smaller than the distance between
dependent iterations in anti-dependency.

Example ®

#pragma omp simd safelen(4)

« If there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma omp simd reduction(operator:list) .

Example @

#pragma omp simd reduction(+:sumx) _

« Rewrite the code to remove the dependency. Use programming techniques such as variable privatization.

0 Roofline conclusions
Conclusions, with optimization recommendations, are sorted by relevance.

\, Sd0149

FLOP / Byte
(Arithmetic Intensity)

This loop is mostly compute bound
The bottleneck depends greatly on the accessed computational unit.
The loop s scalar. To fix: Vectorize the loop.

Intel, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Performance after resolve dependencies

& e e 32+ | RO IORKTRIOY - i Abockies - Ao

B Summary Survey & Roofline ™1 Refinement Reports

© CPU / Memory Roofline Insights

CPU / Memory Roofine Insights perspective measures and visuaizes the actual performance of CPU kemels against hardware-imposed performance cellings and determines the main limiting factor

v Program Metrics

Elapsed Time 4325 ¢ ~ GFLOPS 61.06

Vector Instruction Set AVX2, AVX GFLOP Count 263.996
Number of CPU Threads 1 FP Arithmetic Intensity 0 1.372
+ GINTOPS 047

v Performance Characteristics

Total CPU time 4328

Time in 1 vectorized loop 4308 98,
Time in scalar code 0.028 0.4

 Vectorization Gain/Efficiency
Vectorized Loops GainEffciency’ 7.05x

Program Approximate Gain 7.03x

> OP/S And Bandwidth

v Per Program Recommendations

& No data avallable

v Top Time-Consuming Loops

4.304s 43048 499;4;4 s)

100p In GSimut

art at GSimul
O loop In GSImula 1t 3t GSimu 0.008s 43128 4000
© loop In GSimulation 0.008s 0.008s 4000
O loop In GSimulation <0.001s 43208 500

v Suitability And Dependencies Analysis Data

A No data avallable. Cosect Suitabs

or Dependency to see the results

v Recommendations

Align data loop in GSimutatio

trip count loop In GSim:

e loop In GSimula

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Performance After Resolved Dependencies

% Survey & Roofline ™1 Refinement Reports
ely v | Cores: 1 @ + |Y Default: FLOAT v | |T Compare v | |/* Guidance v |

Summary

kQ

?
[F R P SP Vector EMA Peal 123,83 GFLOPS

. 2
_ - SPVector Add Peak: 62.06 GFLOPS>
DP Vector FMA Peak. 6182 GFLOPS

?
DP Vector Add Peak: 31.02 GFLOPS

100 +

S40749
\
.
.
v
4
. '
!
B
v
v
v
.
-+ “
y

4
|

0440 Bound by compute .
Memory bound” and memory roofs’ Compute bound™
FLOP/Byte (Arithmetic Intensity)
T T T T T T FAY T T
0.04 0.07 0.1 04 07 1 4 7

Physical Cores: 4 @ App Threads: 1 @ Self Elapsed Time: 4.304 s Total Elapsed Time: 4.304 s

New memory access pattern plus vectorization produces much improved performance!
What's next? Try suggestions for aligning data.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Final performance

@ CPU / Memory Roofline Insights ° Some add|t|0nal
;zl_tl)r Memory Roofline Insights perspective measures and visualizes the actual performance of CPU kemnels against hardware-imposed performance ceilings and determines the main limiting pe rfo rm a n Ce e ked O u t.
A * Vectorization of loop now
~ Program Metrics
Elapsed Time 4.17s - GFLOPS 63.33 1 000/0

Vector Instruction Set AVX2, AVX GFLOP Count 264.092

pamier o CPU T | ey s At this point, you'll likely
v Performance Characteristics need to SWitCh to VTune to
e — begin investigating cache

Time in 1 vectorized loop 4.08s

Time in scalar code 0.07s 1 1.6% m Isses.
~ Vectorization Gain/Efficiency

Vectorized Loops Galn/Efficiency 8.58x [T —

Program Approximate Gain 8.46x

> OP/S And Bandwidth

~ Per Program Recommendations

A No data available

~ Top Time-Consuming Loops

Loog Self Time Total Time Trip Counts' Vector Efficiancy’
loop in GSimulation:startSomp$parallel@141 at GSimulation.cpp:157 4.082s 4.082s 500 [11— |
O loop in GSimulation:startSompSparallel@141 at GSimulation.cpp:142 0.060s 4.142s 4000
3 loop In GSimulation:startSompSparallel@179 at GSimulation.cpp:179 0.008s 0.008s 4000
& loop in GSimulation:start at GSimulation cpp:138 <0.001s 4.150s 500

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

ADVISOR GPU UFFLUAD

codes to migra

Offload Advisor

* Another option for accelerating loops is offloading them to an accelerator
such as a GPU.

* As with vectorization, Advisor now has the capability of allowing the user
to test if kernels would benefit from offloading

* Run a number of Advisor collections to generate data

* Run a projection to a specific architecture (Intel only)

* Report shows which loops would benefit from offloading, and which would
not.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Nbody test case

« Take final optimized test case (ver7) with the main computational loop
parallelized with OpenMP on the host (OpenMP not a requirement)

* Collecta survey

 advixe-cl --collect=survey --project-dir=./advi_proj_v7 --stackwalk-
mode=online --static-instruction-mix -- ./nbody.x 4000 500

* Collect flops and counts and target a particular device

* advixe-cl --collect=tripcounts --project-dir=./advi proj v7 --flop --
target-device=gen9 gt2 -- ./nbody.x 4000 500

« Do a projection, targeting the same device

* advixe-cl --collect=projection --project-dir=./advi proj v7 --
config=gen9 _gt2 --no-assume-dependencies

Optimization Notice

Copyright © 2018, Intel C
*

Offload summary

Offload Modeling
5> Accelerated Regions = Logs ~ .

Top Metrics
| 4.4x | 4.4x | 100% | 1
Speed Up for Accelerated Code Amdahl's Law Speed Up Fraction of Accelerated Code Number of Offloads
Program Metrics Offload Bounded By
Compute 100%
Original 4158 m L3 Cache BW 0%
. |
Accelerated 0.95s LLC BW 0%
Memory BW 0%
Program Time on Host After Ac... 0s Target Platform Gen9 GT2 Latencies 0%
W Non Accelerated Time 0s Number of Offloads 1 Data Transfer 0%
W Time in MPI calls 0s Speed Up for Accelerated Code 4.4x Launch Tax 0%
Time on Target 0.95s Amdahl's Law Speed Up 4.4x m Dependency 0%
Fraction of Accelerated Code 100% m Trip Count 0%
Atomics 0%
Unknown 0%
Non Offloaded 0%
i Topoffloaded Top Non-Offloaded
Loop/Function Speed-Up Estimated Bound... Estimate...
[loop in GSimulation::startfomp$ 141 CPU 4.165
at GSimulation.cpp:142] 4385x GPU 953.0ms Compute 08

No data available

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Offload modeling Accelerated regions tab

Offoad Modelng Jam o e Pap—— « Drill down on offloaded loop
o ' « Estimated speedup

CPU+GPU

Data Transfer Estimations Details .
[P Measur.. Basic Estimated Metrics » Estimated Bounded By R i\ TRANSFERRED DATA & TAX . La unc h an d d ata tra n sfe r late ncies
& Time Speed-Up Time ‘OMoad Summary Theoughput Taxes With Reuse Latencies N .
COLLECT CHARACTERIZATION WiTH "LIGHTIFULL DATA TRANSFER
Comn Sty LT 2605 e TIER AT * Offload loop with
» [loop In GSimutation lei@te 4155 4385 953.0ms @ Offioaced T B .

A\ OFFLOADED OBJECTS: NO DATA AVAILABLE

X + OpenMP target directives and data
@ Conier g Opon map e mapping clauses
Sore x| Topowm X Racommentutons * Profile again with

Line Source Is Officaded ~ Speed.Up Time . .
X e e, * advixe-cl -collect=roofline
133 double gflops - 1-9 * { (11. + 18.) * nd*nd + nd * 19. };

134 double av=0.9, devsd.o; .

-profile-gpu

136

137 const double 18 - time.start();

138 for (int s=1; s<=get_nsteps(); ++5)

139 {

140 ts@ 4= time. start();

141 spragma omp parallel for

T

144 #1fdef AsaLIG

145 __assume_sligned{particles-»pos_x, alignment);

148 __assume_aligned(particles->pos_y, aligoment);

147 __assume_aligned(particles->pos_z, aligmment);

149 __assume_aligned(particles-vace_y, alignment);

150 __assume_aligned(particles-»acc_z, alignment);

151 __sssume_sligned(particles-»nass, alignment);

real_type ay_i = particles-racc_y[il;
155 real_type az_i = particles->ace_a[1];

tpragna omp sind

157 for (3 - ;3 < n; e)
158 {

158 real_type dx, dy, dz;

(0] ation Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

GPU Roofline Summary

B o a Program time
GPU time
Data transfer
\ 7.2% I 245% | 1145 | 3 tl me
CPU time

Program Metrics

| 10.55s | 3.211s | 0.031s | 7.34s

B ey

GFLOPS: 57.31 v GINTOPS: <0.01

OPiS and Bandwidth o 1: .
e * ItIZzation
| roorume [FLoar R | moorLne rioat [
.
700 00
: * EU threadin
00 /
Occupanc
70
1 10 100 000 10000 0.04 007 04 04 07 ° I P(rate
GFLOPS: 57.31 out of 630,31 SP GFLOPS v GINTOPS: < 0.0 out of 3368 Integer GINTOPS -
 Thread count
Top Hatspots
B ceu 0 cru
.
compute Tk A arone awrors Wk Seocn — tot Eupsea e © sotramLoes S ° R 00 f l ine
3.18 57.673 1497 4000 %1% 1132 % 1 X 1 514481105 0.085 0 o
<0015 0 o021t 22x1x 132 1x1 0101000 0.065 0 o
0.045 o <0.001
[]
0.028 0 a
0.02s 0 0
Platform Information Collection Information
Performance Characteristics
B oy 8 cru
EU Array Active | EU Array Stalled / EU Aray idle 51.1%/w478% = 1.1% Time in 4 Veciorized Loops 275

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

GPU ROOﬂme InSIghtS Measured GPU roofline
« L3,SLM, GTl and

TP —— DRAM bandwidth
: - = # e Kernel location

g Cccupancy 13%

,, “ e« FPU Utilization
.......... EU Threading Occupancy
' |PCrate
» Active/stalled/idle %

’
SP Vit Al Pesk £30 31 GFLOPS

GPy
Camputs Task Elapsed Time CoC ThLr D = Lt € Compue Tk oy Tack Detals Data Trnsforted L3 Shadr Banswiih GBises

GFLOPS GMTOPS Feu WT Al GFLOP GINTOP ol Local Furpase R

73385 0000 o000 0.000 .00 o000 0000 [Unknaur] o 0444 00

auz1s 0000 0000 0.000 0000 0000 Tramster In 00008 104.1 MB 0000 (X!

00108 o000 oam0 0000 0000 oan0 Transter Ot 0.0005 o010 0o

0.0005 0000 o000 0000 0000 0000 Tramstor In 00005 1208 0000 0o

imutation: startSamgSoftoading 105 00005 o000 oaz1 0000 oano axtnt 2xtal Compue o oam0 o

35 imusston: startsampSoMoating 180 3805 57,873 1437 3,172482 70758 184012 4000% 131 sxiz1 Gompue 10182 a0

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Data collection for specific regions: ittnotify

#include <ittnotify.h>

Int main(int argc, char* argv[])
{

// do work here

__itt pause();

// do more work

__itt resume()

// Interesting work here

__itt pause()

// Do more uninteresting work

Return 0;

}

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

If you just want to collect/examine data from
specific regions in your code, you can use
ittnotify interface.

« Linkin libittnotify.a

« Can start program with __itt_pause() or
launch with advixe-cl -start-paused.

e CanalsouseinVTune

 Also a Fortran interface
* e.g CALLITT_PAUSE()

INTEL™ VTUNE"

Core-level hardware metrics

https://www.alcf.anl.gov/user-guides/amplxe-cl-xc40

Intel® VTune™ Amplifier

VTune is a full system (node level) profiler
= Accurate
= Low overhead
» Comprehensive (CPU, GPU, microarchitecture, memory, 10, threading, ...)
» Configurable interface with easily accessed help
= Direct access to source code and assembly
Analyzing execution behavior with shared resources is

critical in achieving good performance on multicore and
offload processing systems

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

VTune Phases

Collection == Finalization

* Record data Calculations based on
recorded data
* Occurs while target
executable is » Used in displays / views
running
* Occurs after collection
or in GUI (deferred)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Reports
* Static report

 Various formats: text,
HTML, XML, CSV

Display (Views)
* VTune GUI

* Interactive, configurable

Predefined Collections

* Many available analysis types (only sme below):

* hotspots Basic hotspots

* memory-consumption Use of memory and allocation

« uarch-exploration CPU microarchitecture bottlenecks

* memory-access Memory access

« threading Threading performance, overhead

* hpc-performance OpenMP eff., memory access, vectorization,etc
* io I/O subsystems, CPU, processor buses

+ gpu-offload Code execution on cpu and gpu

* gpu-hotspots Hots spots, GPU hw metrics, mem latency, etc

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel VTune Profiler

Project Navigator Welcome Configure Analysis >

n Configure Analysis (17

9 Local Host ~

Q File

» B sample (matrix)
» Il spam
~ [spam2

sycl-app.exe” is not an executable binary.
Retry
Application:

C:\Users\cordery\AppData\Local\Packages\CanonicalGroupLimite« | 3 ©

Application parameters:

+| Use application directory as working directory

Advanced v

User-defined environment variables:

Managed code profiling mode

Auto

Automatically resume collection
after (sec):

Automatically stop collection after
(sec):

| Analyze child processes

Per-process Configuration Analyze

Default v self v children

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

"C:\Users\cordery\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu18.

INTEL VTUNE PROFILER

@ Performance Snapshot ~

Performance
Snapshot

ALGORITHM
ARCHITECTURE

Hotspots @

Microarchitecture

0 Exploration

Anomaly -
Detection
(preview) Memory Access
PARALLELISM ACCELERATORS
Threading HPC GPU Offload
Performance
Characterization
GPU
Compute/Media
Hotspots
(preview)
CPU/FPGA
Interaction
R

Intel VTune Profiler

Optimizatio

ice
Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Copy Command Line to Clipboard
Command line:

"C:\Program Files (x86)\Intel\oneAPI\vtune\latest\biné4\vtune" -collect hotspots -
app-working-dir "

\Program Files\DxO\DxO PhotolLab 4" "--app-working-dir=C:\Program

Files\DxO\DxO PhotoLab 4" -- "C:\Program Files\DxO\DxO PhotoLab 4\DxO.PhotolLab.exe"

Close

49

HPC-Perf analy5|s nbody demo (ver7: threaded)

HPC Performance Characterization HPC Performance Characterization = ol Conaionicaliocton Fogll Summary. [Botiomup
. - Effartiva Phucical fara | Hilizatinn 7+ & 704 (2 988 nut of 4)

Vectorization : 100.0% of Packed FP Operations

Instruction Mix:

SP FLOPs : 62.3% of uOps
Packed - 100.0% from SP FP
Scalar @: 0.0% from SP FP

DP FLOPs @: 0.0% of uOps
Packed ©: 0.0% from DP FP
Scalar ©: 0.0% from DP FP

x87 FLOPs @ 0.0% of uOps

Non-FP - 37.7% of uOps

FP Arith/Mem Rd Instr. Ratio ©: 6.662
FP Arith/Mem Wr Instr. Ratio ©©): 495.224

"N/A is applied to metrics with undefined value. There is no data to calculate the metric.

Top Loops/Functions with FPU Usage by CPU Time
This section provides information for the most time consuming loops/functions with floating point operations.

Function CPU Time % of FP Ops FP Ops: Packed FP Ops: Scalar Vector Instruction Set Loop Type
[Loop at line 193 in GSimulation::startfomp$parallel@163] 8.234s 62.9% 100.0% 0.0% AVX(256); FMA(256) Body
[Loop at line 165 in GSimulation::startfomp$parallel@163] 0.023s 25.0% 100.0% 0.0% AVX(128); AVX(256); AVX2(256); FMA(256) Body
*N/A 1s applied to non-summable metrics.
WA is appiied fo metrics with urdefined value. Thers s no data fo caiculate the metric o g.:
Top Loops/Functions with FPU Usage by CPU Time 2
This section provides information for the most time consuming loops/functions with floating point operations. 200ms E':
Function CPU Time % of FP Ops. FP Ops: Packed FP Ops - < |
[Loop at line 193 in GSimulation: startSompSparallel@163] 8.234s 62.9% 100.0% o 3 T H T B H H 7 a
[Loop at line 165 in GSimulation::startSompSparallel@163] 0.023s 25.0% 100.0% Idle Poor , M

"NeA is appliad to non-summable metrics
Simultaneously Utiized Logical CPUS

opyright© 8| el

*Other names and brands may be clalmed as the property of others.

HPC-Perf: Bottom-up Hotspots view

HPC Performance Characterization Holspols by CPU Utilization = @ 111

Analysis Configuration
3rouping: | Function / Call Stack

Collection Log ~ Summary ~ Botom-up CalleriCalles Top-down Tree Platform

INTEL VTUNE PROFILER
_— //

v|[%][a]fz=

Function / Call Stack CPU Time ¥ Instructions Retired | CPI Rate Module Function (Full)
[Loop at line 183 in GSimulation: startSompSparaliel@163] 8.234s 34,030,500,000 0.848 | nbody.x [Loop at line 193 in GSimulation:startSompSparallel@163]
[Loop at line 553 in _INTERNALc188d78f:__kmp_wait_template<| 0.115s | 126,000,000 2,833 libiomp5.s0 [Loop at line 553 in bool _INTERMALc1eBd79F:__kmp_wait_template<kmp_flag_64
[Loop at line 165 in GSimulation: startSompSparaliel @163] 0.023s 77,000,000 1136 nbody.x [Loop at line 165 in GSimulation:-startSompSparallel@163]
[Loop at line 553 in _INTERNALc1e8d79F:__kmp_wait_template<| 0.016s 10.5¢ libiomp5.s0 [Loop at line 553 in bool _INTERNALG1eBA79f._kmp_wait_template<kmp_flag_64
[Loop at line 231 in GSimulation: start§ompS$paraliel@231] 0.013s 66,500,000 1.000 nbody.x [Loop at line 231 in GSimulation:startSompSparallel@231]
[Loop at line 553 in _INTERNALc1eBd79r:__kmp_wait_template<| 0.002s 3,50 000 libiomp5.s0 [Loop at line 553 in bool _INTERNALc1eBA79f: _kmp_wait_template<kmp_flag_64
kmp_flag_native<unsigned long long, (flag_type)1, (bool)i>:notda 0.0025 24,50 571 libiomp5.s0 kmp_flag_native<unsigned long long, (fiag_type)1, (baol)1>:notdane_check(vaid)
[Loop@0x-Tedd1414 in free_pages_and_swap_cache] (vmlinux [Loop@0x-Ted81414 in free_pages_and_swap_cache]
rb_insert_color 0.001 rnlinux rb_insert_color
func@0x17f00 0 liitinotify_collectorso func@0x17100
func@0xBEL00 0 livitinotify_collectorso func@0x86000
apic_timer_interrupt vmlinux apic_timer_intsrrupt
[Loop@0x14860 in __Ill_lock_slision] libpthread-2 26.s0 [Loop@0x 14860 in __Il_lock_elision]
func@0x12530 libittnatify_collectorso func@0x12530
page_fault vmlinux page_fault
[Loop@0x-Teda874d in unmap_page_range] 3,500,00 000 vmlinux [Loop@0x-Teda874d in unmap_page_range]
ret_from_intr 0 vmlinux ret_from_intr
func@0x1fbde 0 libittnotify_collectorso func@0x1fod6
nfs_check_cache_invalid nfs nfs_check_cache_invalid
func@0x21150 lipitinotify_collectorso func@0x21f50
lookup_fast 0 vmlinux lookup_fast
func@0x401bd0 0 nbody.x func@0x4016d0
_INTERNALc1e8d79f:__kmp_wait_template<kmp_flag_84<(boal) (.01 libiomp5.s0 bool _INTERNALc1e8d79f.__kmp_wait_template<kmp_flag_64<(bool)0, (bool)1>, ¢
kmp_flag_native<unsigned long long, (flag_type)1, (bool)i>:get | O libiomp5.s0 kmp_flag_native<unsigned long long, (fiag_type)1, (bool)1>:get(void)
__kmp_determine_reduction_method 0 libiomp5.s0 __kmp_dstermine_reduction_msthod
__ompt_get_task_info_internal 0. libiomp5.s0 __ompt_get_task_info_internal(int, int*, ompt_data_t™*, ompt_frame_t", ompt_data_
[Loop@0x-Tef23b35 in task_tick_fair] 0.0¢ vmlinux [Loop@0x-Tef23b35 in task_tick_fair]
O: + o o1 02 53 a4s 05 050 o7s 0.8 05 15 Scale Markers:
2 ™ OpenMP Barrier-
GPU Execution Units | [Running
GPU Computing Threads Dis... i CPU Time

GPU EU Instructions

GPU Memory Access 0050 |

GPU L3 Cache Bandwidih a...
GPU Untyped Memary Accass
GPU Typed Memory Accass
GPU Shared Local Memory
GPU Utilization

CPU Time

System Bandwidth 280007

GPU Fraquency

FILTER

1000% o | | Cal Stack Mode
Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

User functions + 1 ~ | Leop Made | Loops and functions + | Inling Mode: | Show infine functions ~

*Other names and brands may be claimed as the property of other:

i Spin and Ovarhe.
® Clocktick Sample
GPU Execution Units
EUAmays
-~ Active
Idla
-~ Stalled
GPU Computing Thr...
~~ Computing Threa. .
~* EU Threads Oce
GPU EU Instructions
~~EU IPC Rate

Use drop down menu to access
‘Hotspots by CPU Utilization’

Double click on line to access
source and assembly.

Notice the filtering options at the
bottom, which allow customization
of this view.

Can also do this under “HPC
Performance Characterization” and
see loop/function data for spin
time, serialization, FP Ops, CPI, etc.

Next steps would include additional
analysis to continue the
optimization process.

HPC Perf: Bottoms Up — Source View

HPC Performance Characterization Hotspots by CPU Utilization = @ 17

Analysis Configuration ~ Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform GSimulation.cpp

Source Assembly LU L

S.. A Source

193 for (int 3 = 0; j < n; j+4)
194
195
196
197
198
199
200
201
202
203
204 f1flop
205 dy = o [3] - particles- : //1flep
206 dz = p cles->pos_z[§] - particles—>po //1flop
207
208
209
210
n
212
213
214
215 | ax_i+= dx * G * particles->mass[j] * distancelnv * distancelnv * distancelnv; //6flops
216 ay L +=dy * G * ¢

217 az i +=dz * G *

/€flops

tanceInv * distanceInv

1els

s=[§] * distaneeI

[3] * distancel]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

mmmemmC lICK through bottom’s
up view to see source

CPU Time * | Instructions Retired
d metri
1.401s D 6,345,500,000 a n e rl CS "
0.148s | 346,500,000

0.142s | 311,500,000

0438s @ 906,500,000
1.118s @ 2,856,000,000

_ogag 20,251,000,000
0.489s @ 1,323,000,000
0.393s § 1,680,000,000

HPC Perf: Memory Usage

HPC Performance Characterization Memory Usage = @ 7 H f
Analysis Configuration Collection Log Summary Bottom-up Platiorm G et oVe rVI eW O

Elapsed Time : 1.072s

CPU Time @1 8.4255

Loads: 3,122,003,660 ° total loadS/StO res
Stores: 42,001,260

LLC Miss Count 0

Total Thread Count: 8

Paused Time &: Os

.
* bandwidth
anawi usage
Bandwidth Utilization Histogram
Explore bandwidth utilization over time using the histogram and identify memory objscts or functions wi
.

Banduwidth Domain: | DRAM, GBlsec v ° L3 ba N d WiI d t h

Bandwidth Utilization Histogram

This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the

utilization types in the Bottom-up view to group data and see all functions executed during a particu
measure them; for example, Intel Memory Latency Checker can provide maximum achievable DRA

) * GPU bandwidths

1000ms

Elapead Time

800ms.

600ms

Observed Maxin

* top functions with high bandwidth
utilization.

400ms.
200ms.

oms

Top Functions with High Bandwidth Utilization
This section shows top functions, sorted by LLC Misses that were executing when bandwidth utiliza

Mo data to show. The collected dafa is not sufficient.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

HPC Perf: Memory Usage, bottom’s up view

INTEL VTUNE PROFILER

[E Hpc Performance Characterization Memory Usage = @ 1)
Analysis Configuration Collection Log ~ Summary Batomup Platform

o:+ L ") ® DRAM Bandwidth
£ Avarage Bandwidth, G.
§| packagel C Raad
i " i
5 Total, GBisox
&
a
Grouping: | Function / Call Stack v|[%[a
Function / Call Stack CPUTime ¥ Loads Stares LLC Miss Count Modula Funciion (Ful}
¥ [Loop at line 183 in GSimulation startSomp$parallel@16: 8.234s (N 3075082250 0 0 nbody.x [Loop at line 193 in GSimulation: start$omp§parallel@163)
[Loop at line 553 in _INTERNALC1e8d79%:_kmp_wait t& 0.115s | 24,000,720 0 libiomp5.s0 [Loog at line 553 in boal _INTERNALC1eBd79t: _kmp_wait_template<km
[Loop at line 185 in GSimulation::startSompSparallel@ 167 0.023s 0 nbody.x [Loop at line 185 in GSimulation: startSompSparallel@ 163)
[Loop at line 553 in_INTERNALc1e8d79t:_km te 0.016s 2 0 libiomps.50 [Loop at line 553 in bool _INTERNALc1eBA791:_kmp_wai_template<km
[Loop at line 231 in GSimulation::startSomp$paraliel@231) P.013s 16000480 23,000,690 0 nbodyx [Loop atline 231 in GSimulation::startSompSparaliel@231)
[Coop al line 553 In _INTERNALC 1684761 kmp_wall_i¢ 0 liblomps.so [Loop at line 553 in bool _INTERNALc1e84791-:_kmp_wail_template<km
kmp_flag_nalive<unsigned long long, (flag_type). (bool) 0 libiomp5.so kmp_flag_native<unsigned lang long, (flag_type)1, (bool)1>:notdone_che
kmp_flag_native<unsigned long long, (flag_type), (bool)’ 0 libiomp5.50 kmp_flag_native<unsigned long long, (flag_type)1, (boal)1>::get{void)
[Loop@0x 14860 in _Il_lock_slision] 0 libpthread-2.26.50 [Loop@0x14860 in _Il_luck_slision]
func@0x17100 0 ibitinolify_collectorso func@0x17f00
func@0x86500 0 libitinotify_collectorso func@0x8GbO0
func@0x12530 0 libitinotify_callectorso func@0x12530
func@0x1fods 0 libitinotify_callactor.so func@0x1fbd6
nfs_check_cache_invalid 0 nfs nfs_check_cacha_invalid
func@Ox21150 0 libittnotify_collector.so func@0x21f50
func@0x401bd0 0 nbody.x Hunc@0x401bd0
INTERNALc1eBdTOE. kmo wait temolate<kmo flag € L Jibiomes 50 bool _INTERNALc1e8d76f . kmp wail temolate<kmo flan A4<ihool¥)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Can see loads and stores by
loop/function

Sort by loads/stores/llc miss
counts

Can also click through as before
to see source level view of

« Cputime
 Loads/stores

e LLC miss counts

HPC-Perf: Hardware Events

R T Drop down for Hardware Events.

() Elapsed Time :1.072s
CPU Time B8.425s
CPI Rate 0.857

e Summary of all measured
7 Hardware Even::ruware Event Type Hardware Event Count Hardware Event Sample Count Events Per Sample Precise p e rfo r m a n C e C 0 u n te rs

CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE [[100003 False
CPU. K_UNHALTED.REF_TSC 29,522 500,000 8,435 3500000 False
CPU_CLK_UNHALTED.REF_XCLK 201,006,030 201 100003 False
CPU_CLK_UNHALTED.THREAD 20,505,000,000 8430 3500000 False H H 1
CYCLE_AGTIVITY.STALLS_LID_MISS 20,000,030 1 2000003 False Ve ry S I I I I I a r res u ts to W at yo u get
CYCLE_ACTIVITY.STALLS L2 MISS a o 2000003 False
CYCLE_ACTIVITY.STALLS L3 MISS a 0 2000003 Falsa ‘ -
CYCLE_ACTIVITY.STALLS_MEM_ANY 5,260.007,920 264 2000003 False fro m u a rC h - C O l l e Ct I O n !
CYCLE_ACTIVITY.STALLS TOTAL 6,940,010,410 347 2000003 False

E_ACTIVITY.1_PORTS_UTIL 7.460,011,190 373 2000003 False

E_ACTIVITY.2_PORTS_UTIL 7.180,010,770 350 2000003 False
EXE_ACTIVITYBOUND_ON_STORES 0 0 2000003 False

E_ACTIVITY.EXE_BOUNI)_PORTS 1,140,001,710 a7 2000003 False
FP_ARITH_INST_RETIRED.1288_PACKED_DOUBLE a o 2000003 False
FP_ARITH_INST_RETIRED1288_PACKED_SINGLE 0 0 2000003 False

_ARITH_INST_RETIRED.2568 PACKED_DOUBLE 0 0 2000003 False
FP_ARITH_INST_RETIRED.2568_PACKED_SINGLE 20.800,031,200 1,040 2000003 False

ARITH_INST_RETIRED.SCALAR_DOUBLE a o 2000003 False
FP_ARITH_INST_RETIRED SCALAR_SINGLE 0 0 2000003 False
IDQ_UOPS_NOT_DELIVERED.CORE 7.640,011,460 382 2000003 False
INST_RETIRED.ANY 34,415,500,000 9,833 3500000 False
INT_MISC.RECOVERY_CYCLES a 0 2000003 Falsa
L1D_PEND_MISS.FB_FULL:cmask=1 0 0 2000003 False
L1D_PEND_MISS PENDING 580,000,870 2 2000003 False
MEM_INST_RETII ALL_LOADS_PS 3,122,093,660 3122 100003 True
MEM_INST_RETIRE LL_STORES_PS 42,001,260 42 100003 True

MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS [0 100003 True
MEM_LOAD_L3_HIT_RETIRED.XSNF_HIT_PS [0 100003 True
MEM_LOAD L3 HIT_RETIRED.XSNP_MISS_PS Q 0 100003 True
MEM_LOAD_RETIRED.FB_HIT_PS [o 2000005 True
MEM_LOAD_RETIRED L1_MISS_PS [[2000003 True
MEM_LOAD_RETIRED L2_HIT_PS a 0 2000003 True
MEM_LOAD_RETIRED.L3_HIT_PS a o 200003 True
MEM_LOAD_RETIRED.L3_MISS_PS [0 50003 True
NDING.ALL_DATA_RD:cmask=4 120,000,180 6 2000003 False
OFFCORE_REQUESTS_QUTSTANDING.CYCLES_WITH_DATA_RD 1.240,001,860 62 2000003 False
UOPS_EXECUTED.THREAD 34,300,081,450 1,715 2000003 Falss
UOPS_EXECUTED.X87 [o 2000003 False
UOPS_ISSL 33,440,050,160 1672 2000003 False
OPS_RETIRED.RETIRE_SLOTS 33,400,050,100 1,670 2000003 False

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of other:

HPC

Events ~ @

Analysis Configuration Collection Log
Grouping: Function / Call Stack

Function / Call Stack

INST_RETIRED.ANY ¥

» [Loop at line 193 in GSimulation:start$a
[Loop at line 553 in _INTERNALc1e8d7!
[Loop atline 165 in GSimulation::start$o
[Loop at line 231 in GSimulation::start§a
kmp_flag_native<unsigned long long, (1l
[Loop at line 553 in _INTERNALc1e8d7¢
_INTERNALf5aa36ea::__kmp_for_static
[Loop@0x3de80in _ G strioll_|_i
GSimulation::startSomp$parallel@163
func@0xB45c0
__vsscanf
func@0x1bbf0
func@0x1eab0
do_lookup_x
kmp_flag_native<unsigned long long, (f
__memmove_avx_unaligned_erms
[Loop at line 553 in _INTERNALc1e8d7¢
_INTERNALc1e8d79::__kmp_hyper_be
__kmp_invoke_microtask
[Loop at line 110 in_strlen_s_chk]
_INTERNALc188d79f::__kmp_hyper_be
_raw_spin_lock_irgsave
interrupt_entry
__mod_lruvec_state
[Loop@0x-Ted200a5 in link_path_walk.|
[Loop@0x-TedaBT4d in unmap_page_re

O: e = 0 @ 200m:

OMP Worker Thread #3 (TI

Thread

OMP Worker Thread #1 (TI..
OMP Worker Thraad #6 (TI
INST_RETIRED.ANY
UOPS_EXECUTED.THREAD
UOPS_ISSUED.ANY
UOPS_RETIRED.RETIRE_
CPU_CLK_UNHALTED RE...
CPU_CLK_UNHALTED.TH
FP_ARITH_INST_RETIRE.

Hardware Evant Type

1DQ_UOPS_NOT DELIVE. W

il
EXE_AGTIVITY.1_PORTS_.. | fj
EXE_ACTIVITY.2_PORTS._...

[T [TV
GPU Exacution Units

P Camnitins Thraade Mie

FILTER

Summary | Event Count

1000% g0 | | Any Process v

| CPU_CLK_UNHALTED.THREAD |

34,030,500,000 28,871,500,000
126,000,000 357,000,000
77.000,000 87,500,000
66,500,000 66,500,000
24,500,000 14,000,000
10,500,000 38,500,000
7,000,000 0
3,500,000 0
3,500,000 3,500,000
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 7,000,000
3,500,000 0
3,500,000 3,500,000
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 0
3,500,000 0

250(271.439ms | 300ms

|| Hardware Event Count

CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE: 0

ELVTUNE PROFILER

Sample Count Uncore Event Count Caller/Callee Top-down Tree Platform - /
~| %| @ % || Hardware Events
Hardware Event Type Herdware
CPU_CLK_UNHALTED.REF_TSC | CPU_CLK_UNHALTED.REF_X| Event Count
28,850,500,000 BN . CLk UNHALTED.REF TSC 28,850,500,00
402,500,000 2,00/ T - 0
80,500,000 CPU_CLK_UNHALTED REF_XCLK 199,005,970
45,500,000 -
7,000,000 CPU_CLK_UNHALTED.THREAD SB'W' s00.00
56,000,000
o CYCLE_ACTIVITY.STALLS_L1D_MISS 20,000,030
[CYCLE_ACTIVITY.STALLS_MEM_ANY 5,200,007,800
[CYCLE_ACTIVITY.STALLS_TOTAL 6.420,008,630
0 EXE_ACTIVITY.1_PORTS_UTIL 7.460,011,180
0
o f EXE_ACTIVITY.2 PORTS_UTIL 7,180,010,740
0 f EXE_ACTIVITY.EXE_BOUND_0_PORTS 1,140,001,710
0 FP_ARITH_INST_RETIRED.256B_PACKED 20,780,031,17
] _SINGLE 0
0 IDQ_UOPS_NOT_DELIVERED.CORE 7.600,011,400
7,000,000
4
0 INST_RETIRED ANY g 020,600,00
0
0 L1D_PEND_MISS.PENDING 420,000,630
0 MEM_INST_RETIRED.ALL_LOADS_PS 3,076,002,250
[5 5
x CORE_REQUESTS_OUTSTANDINGAL o0 o o0
L_DATA_RD:cmask=4
0 . .
IR ST! ST/ ING.C
0 - ‘CORE_REQUESTS_OUTSTANDING.C 1.240,001,860
YCLES_WITH_DATA_RD
3,500,000
RN AMEER TR AR 33.920.050.83
Ssoms Toome Scale Markers:

™= Region Instance
== OpenMP Barrier-
to-Barrier Segment
Thread ~
I Running
Hardwara Event Co...
| CPU_CLK_UNHZA
Hardware Event Typ v
i Hardware Event Gount

GPU Execution Units

EU Arrays
[T IN T gme
T T T T T i

T T T T TR TR T TR TR T TR T T T

FURTIN (10 VPTY TP | Y1 TS

JTTTTWT T

TR T

JTTT W T

GPU Computing Thr.
~~ Computing Threa..
~~ EU Threads Oce...

YT T VTR O VT 1YY YTV T Y1 YTV T VTRV (VTR T TR 1

GPU EU Instructions

Thiead | Any Thread

~ | Module | Any Moduie

~ || Call Stack Mode | User function - | LeepMade | Loops and fu - | Inlie Mede | Show iniine f. -

*Other names and brands may be claimed as the property of others.

HPC-Perf: Hardware Performance Counters

Bottom up view of
counters

Scroll window to see all
counters.

Timeline of counter
activity

Click through to see
source Level view of
counter data

CPU thread and GPU
counters

uarch-exploration: summary

S 5T« Running 4 threads

) Elapsed Time : 18.759s &

260,403,500,000

MO0 Ner—— ..
i * Want ‘Retiring to be
100%’ - high

1

oo e [S instruction throughput

vare's
instructions are both

cateqorized under (
1.9 S

WPipe » Reporting core bound
3.5 GHz This diagram represents inefficiencies in CPU usage. Treat it as a pipe with an output flow
5 ot

eq pipe efficiency” ratio: (Actual Instructions Retired)/(Maximum Possible

instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe

0s shape gets more narrow. — implying not enough
Effective Physical Core Utilization : 98.9% (3.956 out of 4)

. .
ErecveLogee Care Usshn: 444 0S80t O resources available. in
Effective CPU Utilization Histogram 1
this case likely to be
FP its

28 HE

154 ¥

Targot Utlization

* Also can look at raw
- performance counters
T (including timeline).

J

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

uarch-exploration: bottom up

o n - @ o INTEL VTUNE PROFILER Like other collections, can click through
Analysis Configuration Collection Log Summary Bollom-up Event Count Platform

Svouping | Funcion / ol Stk Jall- e Usage:510% o ipsine Sios the top hotspots to see source code and
Back-End Bound . —_— N _______ . . .
I where limiter is seen to be sequence of

Function | Call Stack iing Front-End Bound Bad Speculation P — Core Bound
o o, ir operations with high flop counts.

_INTERNALd258%eef:;__kmp_wait_]
GSimulation: startSompSparallel@2: 2
_INTERNALd2589eef:__kmp_wait_
account_user_time
apic_timer_interrupt
hrtimer_active
native_read_msr
read_tsc
_raw_spin_lock_irgsave
kmp_flag_native<unsigned long long |
native_apic_msr_eoi_write Retiring: 51.0% of Pipeline Slots
arch_scale_freq_tick Front-End Bound: 0.0% of Pipeline Slots

INTERNALd2589eef. kmp_relea Bad Speculation: 0.0% of Pipeline Slots
cred_fscmp Back-End Bound: 48.9% N of Pipeline Slots
ksoftirgd_running Memory Bound: 1.7% of Pipeline Slots
__intel_avx_rep_memsst Core Bound: a7 of Pipeline Slots
—kmp_acruire_bootsbrap_lock This metric cannot be reliably calculated due 1 MUItIpIeXing ISSUES of low Divide . of Clockiicks
func@0x86a10 number of collected PMU samples. Port Utilization: 46.6% N of Clockticks
_INTERNALd2589eef::__kmp_wait_ — — — — Cycles of 0 Ports Utilized: 0.9% of Clockticks
cpuacct_charge G ' Utilized: 10.7% of Clockiicks
Sinaninkey 26.2% ® of Clockticks

D+ 0 o z‘s S [o) . 08 o 128 145 o |?s R 188 . Thwead v

I Running
CPU Time

OMP Master Thraad #0 (T1.

Thigad

OMP Worker Thread #2 (TI.

OMP Worker Thread #1 (TI.

CPU Time

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

uarch-exploration: 8 thread summary

n"' hit <p i i Exploration v ® [
Analysis Configuration Collection Log Summary Bottom-up Event Count Platform

Elapsed Time : 16.919s

Clockticks: 468,748,000,000 Issue: A significant portion
Instructions Retirad: 545,615,000,000 of Pipeline Slots is

* Running with 8 threads improves

MUX Reliability ©: 0748 issues in the Front-E

Retiring ©: 56.7% of Pipeline Slots -

Front o Bound 257% I ol Py Sl pe rformance ver s[| htl but
Front-End Latency 25.6% R of Pipeline Slots
Front-End Bandwidth 0.1% of Pipeline Slots

Bad Speculation 0.0% of Pipelir 56.7%- Reliing S h OWS CO d e i s n OW fro nte n d b O u n d
Back-End Bound 17.6% of Pipeline

Average CPU Frequency 3.5 GHz

Total Thread Count 8

Paused Tims 0s

* Likely due to pipeline slots being

pPipe

stalled due to too many memory

equal to the "pipe efficiency” ratio: (Actual Instructions Retired (Maximum Possible
Instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe

references per cycle.

Effective Physical Core Utilization : 98.7% (3.946 out of 4)
Effective Logical Core Utilization : 98.7% (7.893 out of 8)
Effective CPU Utilization Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

Elspsed Time

Average Physical Core Utilization

0 1 2 3 4 5 [7 8

Simultaneously Utiized Logical CPUS

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory-Consumption collection:

n Memory Consumption Memory Consumption ~ ® [

Shows top memory
consumers

Analysis Configuration Collection Log Summary Bottom-up GSimulation.cpp *

Bottom’s up show'’s by

Elapsed Time : 1.085 ' ' '
apsed Time S loop/function/timeline of

Allocation Size: 8.0 MB

Deallocation Size: 8.0 MB Consumption
Allocations: 221

Total Thread Count: 8

Paused Time ©: 0s Can click through

Top Memory-Consuming Functions functlon/loop to see

This section lists the most memory-consuming functions in your application. allocat' On/d eallocat|o n SIZGS at
Function Memory Consumption Allocation/Deallocation Delta Allocations Module source level

GSimulation::start 7.8 MB 00B 161 nbody.x

~mm_malloc 160.5 KB 0.0B " nbody.x

pool 72.7 KB 00B 1 libstdc++.80.6

GSimulation::GSimulation 4.1 KB 0.0B 1 nbody.x

_INTERNALa9a94edf::[OpenMP worker] 1.3 KB 00B 28 libiomp5.so

*N/A is applied to non-summable metrics.

Collection and Platform Info

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

VTUNE: ITT

Itt pause & resume

Use ittt pause() &
__itt_resume() to target
data collection only in
specific regions.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

#include <ittnotify.h>
..uninteresting work...
__itt _resume();
..interesting work...

__itt _pause();
..more uninteresting work..

Launch with amplxe-cl -start-paused

Using itt to create custom counters

#include <ittnotify.h>

One can create custom counters that main()
show up on VTune timelines by using {

the itt interface. __itt_counter myCounter;
__itt_counter_create(“myFlops”, “Domain”);
In the example at the right, the counter ~.do some stuff..
" l " will sh . h __itt _counter__set_value(myCounter, &val);
myF Oops” wilt show up In the ..do some stuff..
performance metrics timelines. __itt_counter_set_value(myCounter, &val);
..do more stuff..
. _ __itt_counter_inc_delta(myCounter, &val);
Tested VYIth hotslpot and uarch | o more SLUFF. .
exploration and it works. Some issue __itt_counter_dec_delta(myCounter, &val);
with hpc-performance that is being _ itt_counter destroy(myCounter);
looked at. }

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Counter creation

example

Collected using
‘hotspots’

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hotspots Hotspots by CPU Utilization ~ ®)

Analysis Configuration ~ Collection Lag Summary Bottom-up Caller/Callee Top-down Tree Platform
Gmuping:‘ Function / Call Stack
CPU Time ¥
X » Spin Time «
Function / Call Stack Effective Time by Utilization
Didie @Poor Ok @Ideal @ Over Imbalance or Serial Spinning | Lock Contention | Other

__svml_log4_19
__kmp_fork_barrier
[Outside any known module]
_dl_open

PMPI_Init

__kmp_join_call

O: +

OMP Primary Thread #0 (TI...

Thread

OMP Worker Thread #1 (TI...

1.695s (D
Os
0.020s |
0.010s |
0.010s |
Os

OMP Worker Thread #2 (TI...

OMP Worker Thread #3 (TI...

sock_conn_listener_thread (...

sock_ep_cm_thread (TID: 5...

Global Counters: myFlops

Os Os
0.076s Os
Os Os
Os Os
Os Os
0.008s Os

CPU Utilization

VTUNE: TARGETING MPI RANKS

Collecting on Single MPI Ranks

« Might want to use VTune on an MPI application but not, by default, collect
data on all MPI ranks as VTune is not designed for that.

« Still possible to gather some useful data.

* Using ittnotify is not the route as it still collects data on all ranks even if
you pause collection before MPI_Init()

* Use env vars and MPMD mode:
mpirun -genv I _MPI PIN PROCESSOR LIST=0-2,4-7 -n 7 ./app :

-genv I MPI PIN PROCESSOR LIST=3 -n 1 amplxe-cl -c
hotspots

Optimization Notice

Copyr gh@ZO‘ISI tel Corpo n. All rights reserved.
*Other and bra dmaybllmed hppyfh

VTUNE: GPU OFFLOADING

VTune gpu-offloading

GPU Compute/Media Hotspots (preview) GPU Compute/Media Hotspots (preview) ~ @
Analysis Configuration Collection Log Summary Graphics

Elapsed Time :12.142s
GPU Time : 4.9325.

EU Array Stalled/Idle : 66.6%
Analyze the average value of EU Array Stalled/Idle metric and identify why EUs were waiting for resources instead of doing computations. This
inefficiancy listed below.

GPU L3 Bandwidth Bound *: 2.1%

Sampler Busy " 0.0%

FPU Utilization : 4.7%

Bandwidth Utilization Histogram
Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bar
Bandwidth Domain: | GPU Memory Read Bandwidth, GB/sec v

Bandwidth Ui ion Histogram

This histogram displays the wall time the bandwidth was utilized by certain valus. Use sliders at the bottom of the histogram to define threst
utilization types in the Botiom-up view o group data and see all functions executed during a particular utilization type. To leam bandwidth ci
measure them; for example, Intel Memory Latency Checker can provide maximum achievable DRAM and Interconnect bandwidth.

Eapsed Time

Bandwidt Utlizasan

Collection and Platform Info

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of other:

nﬂuwmdlnﬂmpm(wm GPU Officad - @ f
Analysis Configuration Collecion Log ~ Summary Graphics Platform

Elapsed Time :12.142s

GPU Utilization : 40.6%
Use this section to understand whather the GPU was utilized propsrly and which of the angines were utilized, Identify the amount of gap
calculated for the engines that had at least one piece of work scheduled to them

GPU Utilization

GPU Utiization breakdown by GPU engines.

GPU Engine GPU Time GPU Utilization
Render and GPGPU 49325 406% &

"N i3 appied to 1

ummaie metrcs

Hottest GPU Computing Tasks

This section lists the mast active computing tasks running on the GPU, sorted by the Total Time. Facus on the computing tasks flagged as |

Computing Task Total Time Execution % of Total Time
GSimulation. fMoading: 151 14138 1413 100.0%
GSimulation::st 0.000% 0.000s 100.0%

"N s appliod o1

Bandwidth Utilization Histogram
Explore bandwidth utilization over time using the histogram and identity memory objects or functions with maximum contribution to the high
Bandwidth Domain; | GPU Memory Read Bandwidth, GB/sec hd

Bandwidth Utilization Histogram

This histogram displays the wall time the bandwidth was ufilized by certain value. Use sliders at the botlom of the histogram to define th

utilization types in the Bottom-up view to group data and see all functions executed during a particular utilization type. To learn bandwidt
measure them; for example, Intsl Memory Latency Checker can provide maximum achievable DRAM and Interconnact bandwidth

Elpwed Tmo

Bandwalth Uilzation

Meda Hotspots (previen) = © ELVTUNE PROFILER

B3 cruc /Media Hotspots (preview) GPU Comy

n
[) Analysis Configuration Collection Log ~ Summary Graphics
Memory Hierarchy Diagram

GPU GTI Uncore System

I nfo rm atlon .) X3 eDRAM <—= LLC DRAM
L
about
Data Transferred EU Array - B - l
S p e e d S a n d Size Total, GB/sec Active Stalled Idle ompiiing fhreacs iarte
0.000 35.2% 33.1% 31.7% D9.8

fe e d S (n O 0B 0000 00% 00% 100.0% 0
09% 10% 98.0% 106,307
context)

SubSlice

wr

Srouping:| Computing Task v x|
) Work Size Computing Task Data Transferrad EU Array
Computing Task T T - T - Con
Global ¥ Local Total Time | Average Time | Instance Count | SIMD Width | SVMUsage Type | Size Total GBisec | Acive | Stalled Idle
» GSimulation::startSomp$offloading:151 4000x1x 1 32x1x1 22.487s 0.046s 493 az 0B 0.000 35.2% 33.1% 31.7%
GSimulation::startSemp$ofiloading: 105 2x1x1 32x1x1 0.000s 0.000s 1 32 0B 0.000 0 0c
[Outside any task] Os 0.9% 1.0% 98.0%

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

PROFILING PYTHON & ML APPLICATIONS

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The "application” should be the full path to the python interpreter used
= The python code should be passed as “arguments” to the “application”
In Theta this would look like this:

mpirun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Simple Python Example on Theta

mpirun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

SiBasic Hotepots| HORpots by CPU Usage viewpomt (hange) [0 INTELVTUNE AMPLIFIER 2018
N

7 B coliectionLog O Analysis Target A Analysis Type i Summary &3 Bottom-up & Caller/Callee @ Top-down Tree - Platform [covpy

S S—— Naive implementation of the
~calculation of a covariance matrix

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function Module CPU Time

covpy 113533
<genexpr: covpy 91.587s
i — el Summaryv shows:
[Unknow frame(s)] 1260s -
module covpy 05885
. .
CPU Usage Histogram = Single thread execution
This histogram displays a percentage of the wall time the sp of CPUS were running Spinand O to the Idle CPU usage value
e sl
200s 4 = % ®I
3 5 . . .
EE 5| - 1] n
1505 Bl
1
|
100s |
|
|
505 !
|
|

| . ; i i Click on top function to go to Bottom-
: = up view

Simultaneously Utiized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

Inefficient array multiplication found quickly
We could use numpy to improve on this

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) © I ER2018
 ElCollectionLog @ Analysis Target A Analysis Type & Summary & 8ottom-up & Caller/Callee & Top-down Tree ' Platform [3 cov.py - /7/ L3
Grouping.| Module / Function / Call Stack Y[l |}[cPuTime |
CPU Time ¥ A | Viewing « 10f1 + selected stack(s)
Module / Function / Call Stack > Module 100.0% (1124735 of 112 473s)
0i0e O5om Ok Bea v | SPTme. | Overod Time P ——
v covpy 2037285 2280s 0s covpylmain+0x42 - covpy:200
¥ naive 111.873s 1660s 0s covpy naive(fullArray) covpyl<module>+0x221 - covpy.
v main 110.833s (NS 1.660s 0s covpy main() python2.7!_stari+0x28 - [unknow.
1108135 | 16605 05 | covpy <modue>
» B main — <module> — _star S covpy main()
» M naive — main — <module> | 1.040s 0s 0Os covpy naive(fullAray)
» <genexpr> 90.967s (NS 06205 0s covpy naive@<genexpr>:
» <module> 0.588s 0s 0s covpy <module>
» main 0.300s 0s 0s covpy main()
» [Unknown) 2720s | 0s 0s
» libc-dynamic so 132 s
» python2.7
» libpinddwarf so
~ trackdanc cn o-¢
< >ll¢ >
O: + 0s 505 100s 1505 200s) [Theead
£] #aCPUTime
[2] #a Spin and Overhead Ti
O ® cPu sample

&l Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
7 ElCollectionLog O Analysis Target A Analysis Type & Summary @& Bottom-up & Caller/Callee @ Top-down Tree ‘=

Assembly “ % | % Q| Assembly grouping: Function Range / Basic Block | Address
CPU Time:
Sgu, Source Effective Time by Ui
Line y Utili
| @idle @Poor DOk W ide:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros ((numRows, 1), dtype=float))
63 for § in range (numRows) : |
64 normArrays (i) [§]=fullArray(:, i](3]-np.mean(fullrray(:, i 6.3%[
65
66
67 # calculate covariance and populate resulta array
68 for i in range {numCols):
69 for j in range (numCols): |
70 result[i,j] = sum(p*g for p,q in zip(
7 normArrays(i],nommirrays[j]))/ (numRows)
72
73 end = time.time()
74 print ('overall runtime = ' 4 str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

COMMON ISSUES

Fixes

No call stack information/unknown stack frame
» Check finalization log
= Make sure VTune finds your binary along with libraries that you call
Incompatible database scheme when trying to open result in GUI
= Make sure your local VTune is the same version or newer
VTune sampling driver.. using perf or errors mentioning PMU Resources

» Notify support@alcf.anl.gov or your nearest Intel COE person

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

TIPS AND TRICKS

Speeding up finalization

Advisor VTune

add "--no-auto-finalize " to the aprun add "--finalization-mode=none" to aprun
followed by "advixe-cl R survey ...” without followed by "amplxe-cl -R hotspots..."
aprun will cause to finalize on the without aprun will cause to finalize on
momnode rather than KNL. momnode rather than KNL

You can also finalize on thetalogin: You can also finalize on thetalogin:

cd your_src_dir; cd your_src_dir;

export SRCDIR="pwd | xargs realpath’ export SRCDIR="pwd | xargs realpath’
advixe-cl -R survey --search-dir amplxe-cl -R hotspots --search-dir
src:=${SRCDIR} .. src:=${SRCDIR} ..

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Managing overheads

Advisor Dependencies and MAP analyses can have huge overheads

If able, run on reduced problem size. Advisor just needs to figure out the
execution flow.

Only analyze loops/functions of interest:

https://software.intel.com/en-us/advixe-cl-user-guide-mark-up-loops

Optimization Notice

Copyright © 2018, Intel C
*Other names and brands

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

When do | use VTune vs Advisor?

VTune

What's my cache hit ratio?

Which loop/function is consuming
most time overall? (bottom-up)

Am | stalling often? IPC?
Am | keeping all the threads busy?
Am | hitting remote NUMA?

When do | maximize my BW?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor

Which vector ISA am | using?

Flow of execution (callstacks)

What is my vectorization efficiency?
Can | safely force vectorization?
Inlining? Data type conversions?

Roofline

BACKUP

VTune Cheat Sheet

Compile with —g —-dynamic

amplxe-cl —-c hpc-performance -flags -- ./executable
* -—-result-dir=./amplxe-cl output dir
e --search-dir src:=../src --search-dir bin:=./

* -knob enable-stack-collection=true —-knob collect-memory-
bandwidth=false

* -knob analyze-openmp=true

* —finalization-mode=deferred i1if finalization 1is taking too long on KNL
* -data-limit=125 < in mb

* -—trace-mpi for MPI metrics on Theta

* amplxe-cl —-help collect survey

https://software.intel.com/en-us/amplxe-cl-amplifier-

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others. help_amplxe_d_command_sVntax

Advisor Cheat Sheet

Compile with —-g -dynamic

advixe-cl -c¢ roofline/depencies/map —-flags -- ./executable

—--project-dir=./advixe output dir
——search-dir src:=../src —--search-dir bin:=./

-no-auto-finalize 1f finalization is taking too long on
KNL

-—-interval 1 (sample at 1ms interval, helps for profiling
short runs)

—data-1imit=125 € in mb

advixe—-cl -help

https://software.intel.com/en-us/advixe-cl-help-lin-

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

command-line-interface-reference

Software

